JeCC Award Winner
Jersey
The Dunes is a new 4 bedroom dwelling, designed and built using building physics tools (passivhaus methodology), Modern Methods of Construction, and largely natural or recycled materials - primarily timber. It’s heating/cooling energy demand is modeled at less than 20kWhr/m2 per year.
Architecture: MAC Architectural Services
Construction timelapse
Background
Nestled at the foot of the Sand Dunes in St Ouens Bay lies the recently completed property known as The Dunes. The Dunes is a new 4 bedroom dwelling set within large grounds at the bottom of Mont a La Brune. The property benefits from an elevated position in the bay which affords views over the whole of St Ouens Bay from Corbiere Lighthouse to L’Etacq.
Advanced Housing Systems Ltd (AHS) and MAC Architectural Services Ltd (MAC) were approached by the owner of the Dunes site with the brief to redevelop the existing site and provide a new purpose built family dwelling. The client provided a very detailed brief which included stringent sustainability criteria that were to be met. The new property was to be in the region of 5000sq/ft and was to provide a family home with sociable open plan living areas which maximise the views of the bay and the surrounding sand dunes. The client had a clear desire to make sure the new building would be designed in a fashion that would complement and nestle within the sand dune environment, rather than look to stand out from the bay below.
The design and construction team were directed to reduce the impact the construction had on the environment throughout the design and planning stage as well as the construction process. The heating energy consumed by the end user was targeted to be better than half that of the average new build in Jersey.
The client selected AHS partly as their in-house team included both a Certified European Passivhaus Designer and a Code for Sustainable Homes Assessor (BREEAM). Furthermore, Colin Smith Partnership had advised that the off-site Modern Method of Construction (MMC) build costs were comparable with local non-MMC builds. In this particular build, we used third-party insulated raft foundation and ICF system for the basement - just to make sure we stay ahead of the pack.
Construction phase gallery
The specific sustainability criteria relevant to the Award are examined here
The total energy used, energy use and energy saving techniques
The substructure, including a substantial basement, and superstructure of the building were engineering, manufactured off-site and installed by AHS. The construction incorporated both sustainable materials and passivhaus building methodology.
The design was in 3D and modeled using building physics software for heat loss, thermal mass and vapour transport.
The substructure was an insulated raft of 200mm concrete on 300mm EPS, giving a u value of 0.11 W/m2.K.
This Passivhaus specified base is thermal bridge free and was assembled on-site in 3 days. It is preloaded with underfloor heating and is inherently high thermal mass. The thermal mass absorbs passive gains such as solar during the day and releases the heat at night. This helps overheating as well. A power-float finish means that the floor finish can be installed directly to the base. The basement was integrated into the raft using EPS insulated concrete formwork (ICF).
The superstructure was also manufactured off-site in sustainable materials primarily using engineered timber I joists in the roof and floor cassettes. The remaining envelope was a closed panel system with pre-installed electrics and recycled glass wool insulation.
The overall u value is 0.13 W/m2.K.
The erection time was 4 weeks including installation of our triple glazed low profile glazing.
The mechanical ventilation and heat recovery (MVHR) system recovers around 90% of passive building heat gains and transfers this to fresh incoming air. This relies on exceptional air-tightness which is inherent in the closed panel timber frame/SIPS system, in addition to good site practice.
The speed and efficiency of construction cuts down substantially on site energy use during construction, as well as transportation costs.
The space heating and domestic hot water requirement is fulfilled by high COP air-source heat pumps.